III Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.) Examination, October 2022
(2019 Admission Onwards)

MATHEMATICS

MAT3C12 – Functional Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from Part A. Each question carries 4 marks.

- 1. State and prove Jensen's inequality.
- 2. Prove that a normed space X is a Banach space if and only if every absolutely summable series of elements in X is summable in X.
- 3. Let X be a Banach space, Y be a normed space and (F_n) be a sequence in BL(X, Y) such that sequence $(F_n(x))$ converges in Y for every $x \in X$. For every $x \in X$, define $F(x) = \lim_{n \to \infty} F_n(x)$. If E is totally bounded subset of X, prove that $(F_n(x))$ converges uniformly for $x \in E$.
- 4. State and prove bounded inverse theorem.
- 5. State and prove Schwarz inequality.
- 6. Among the all IP spaces, $1 \le p \le \infty$, prove that only I² is an inner product space.

PART - B

Answer any four questions from Part B without omitting any unit. Each question carries 16 marks.

Unit - I

- 7. a) State and prove Riesz Lemma.
 - b) Let X be a normed space and Y be a finite dimensional subspace of X. Prove that Y is closed in X.

K22P 1409

Let $||\ ||$ and $||\ ||'$ be norms on a linear $\alpha > 0$ such that $\beta ||\ x|| \le ||\ x||' \le \alpha ||\ x||$ to $||\ ||'$ if and only if there are $\alpha > 0$ and $\beta > 0$ such that $\beta ||\ x|| \le ||\ x||' \le \alpha ||\ x||$

- b) Prove that the norms $\|\cdot\|_1$, $\|\cdot\|_2$ and $\|\cdot\|_\infty$ on \mathbb{K}^n are equivalent.
- 9. a) State and prove Hahn Banach extension theorem.
 - b) Prove that a banach space cannot have denumerable basis.

Unit - II

- 10. State and prove uniform boundedness principle.
- 11. a) State and prove open mapping theorem.
 - b) Give an example to show that the open mapping theorem may not hold normed spaces.
- 12. Prove that the coefficient functionals corresponding to a Schauder basis for Banach space X are continuous.

Unit - III

- 13. a) Let $\{u_{\alpha}\}$ be an orthonormal set in a Hilbert space H. Prove that $\{u_{\alpha}\}$ is a orthonormal basis for H if and only if $x \in H$ and $\langle x, u_{\alpha} \rangle = 0$ for all α implies x = 0
 - b) Let $H = I^2$ and for $n = 1, 2, ... u_n = (0, ..., 0, 1, 0, 0, ...)$ where 1 occurs on in the n^{th} entry. Prove that $\{u_n : n = 1, 2, ...\}$ is an orthonormal basis for H
 - c) Let F be a subspace of an inner product space X and $x \in X$. Prove that yell is a best approximation from F to x if and only if $x - y \perp F$ and in that cas $dist(x, F) = \langle x, x - y \rangle^{\frac{1}{2}}.$
- 14. State and prove Riesz representation theorem.
- 15. a) State and prove Bessel's inequality.
 - b) Let E be a nonempty closed convex subset of a hilbert space H. Prove that there exist a unique best approximation from E to x for each x eH.
 - c) Ler $f \in H'$ and $y \in H$ be the representer of f. Prove that ||f|| = ||y||.